Le petit point de cours (3), une correction

1. Y a-t-il équivalence entre convergence absolue et convergence pour les intégrales impropres?

La réponse est NON! Pour une intégrale impropre, l'absolue convergence (c'est à dire l'intégrabilité de la fonction dans l'intégrale) implique la convergence de l'intégrale impropre, sans réciproque.

2. Soit $f:]0, +\infty[\to \mathbb{R}$. Que signifie l'expression « f est intégrable sur $]0, +\infty[$ »?

L'expression « f est intégrable $sur [0, +\infty[$ » signifie que :

- (a) f est continue par morceaux sur $]0, +\infty[$;
- (b) L'intégrale impropre $\int_0^{+\infty} f(t) dt$ est absolument convergente.
- 3. Soit $f:]0, +\infty[\to \mathbb{R}$, continue, telle que l'intégrale impropre $\int_1^{+\infty} f(t) dt$ converge. On pose pour $x > 0: R(x) = \int_x^{+\infty} f(t) dt$.
 - a. Étudier la limite de R en $+\infty$.

Comme l'intégrale impropre $\int_1^{+\infty} f(t) dt$ converge, on peut dire que $\int_1^x f(t) dt \xrightarrow[x \to +\infty]{} \ell \in \mathbb{R}$.

Mais pour tout x > 0 réel on a : $\int_{1}^{+\infty} f(t) dt = \underbrace{\int_{1}^{x} f(t) dt}_{F(x)} + \underbrace{\int_{x}^{+\infty} f(t) dt}_{=R(x)}, \text{ donc :}$

$$R(x) = \ell - F(x) \xrightarrow[x \to +\infty]{} 0.$$

b. Démontrer que R est une fonction de classe C^1 sur $]0, +\infty[$ et donner R'.

Avec les notations ci-dessus on a $R = \ell - F$. Mais comme f est continue sur $]0, +\infty[$, la fonction F est de classe C^1 sur $]0, +\infty[$ avec F' = f. Il en résulte que R est de classe C^1 sur $]0, +\infty[$ avec R' = -f.

- 4. Démontrer que l'intégrale impropre $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
 - La fonction $t \mapsto \frac{\sin t}{t}$ est continue sur $]0, +\infty[$.
 - ullet On a $\frac{\sin t}{t} \underset{0^+}{\sim} 1$ donc l'intégrale $\int_0^1 \frac{\sin t}{t} \mathrm{d}t$ est faussement impropre : $\left[\int_0^1 \frac{\sin t}{t} \, \mathrm{d}t$ converge $\right]$
 - Si X > 0, une intégration par partie donne :

$$\int_{1}^{X} \frac{\sin t}{t} dt = \left\{ \frac{-\cos t}{t} \right\}_{1}^{X} - \int_{0}^{X} \frac{\cos t}{t^{2}} dt$$
$$= \cos 1 - \frac{\cos X}{X} - \int_{1}^{X} \frac{\cos t}{t^{2}} dt$$

Mais:

- (A) La fonction cos est bornée sur IR d'où $\lim_{X\to +\infty} \frac{\cos X}{X} = 0$.
- (B) Pour tout t > 0 réel on a $\left| \frac{\cos t}{t^2} \right| \le \frac{1}{t^2}$. Ainsi, comme l'intégrale $\int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ est convergente (intégrale de RIEMANN) l'intégrale $\int_1^{+\infty} \frac{\cos t}{t^2} \, \mathrm{d}t$ est absolument converge, par domination, donc convergente.
- (A) et (B) permettent d'affirmer que $\exists \lim_{X \to +\infty} \int_1^X \frac{\sin t}{t} dt \in \mathbb{R}$ ce qui signifie que l'intégrale impropre $\boxed{\int_1^{+\infty} \frac{\sin t}{t} dt \text{ converge}}$.
- Les deux résultats encadrés ci-dessus assurent que $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
- 5. Soit α un réel. Quand l'intégrale impropre $\int_0^{+\infty} \frac{dt}{t^{\alpha}}$ est-elle convergente? (on énoncera avec précision les résultats).

Cette intégrale impropre ne converge jamais. En effet :

- (a) $\int_0^1 \frac{dt}{t^{\alpha}}$ converge si et seulement si $\alpha < 1$;
- (b) $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge si et seulement si $\alpha > 1$.
- 6. Quelle est la nature de l'intégrale impropre $\int_0^{+\infty} (\ln t) \mathrm{e}^{-t} \, \mathrm{d}t \, ?$
 - la fonction $f: t \mapsto (\ln t)e^{-t}$ est continue sur $]0, +\infty[$.
 - On a $t^2 f(t) {0 \atop t \to +\infty}$ par croissance comparées donc $f(t) = = \atop t \to +\infty$ normalfonto $(\frac{1}{t^2})$. Comme $t \mapsto \frac{1}{t^2}$ est intégrable en $+\infty$, il en va de même de la fonction f.
 - \bullet On a $f(t) \underset{t \to 0}{\sim} \ln t.$ Or l
n est intégrable en 0 donc f aussi.

Conclusion. Avec les trois précédents, on peut dire que f est intégrable sur $]0,+\infty[$. Ainsi l'intégrale impropre $\int_0^{+\infty} (\ln t) \mathrm{e}^{-t} \, \mathrm{d}t$ est absolument convergente donc convergente.

7. **Bonus.** La fonction $x \mapsto \int_{x}^{1} \frac{e^{-t}}{t} dt$ est-elle prolongeable par continuité en 0?

On a $\frac{\mathrm{e}^{-t}}{t} \underset{t \to 0}{\sim} \frac{1}{t}$. Or $t \mapsto \frac{1}{t}$ n'est pas intégrable en 0, donc $t \mapsto \frac{\mathrm{e}^{-t}}{t}$ non plus. Comme il s'agit d'une fonction positive, l'intégrale impropre $\int_{\to 0}^1 \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t$ n'est pas convergente : la fonction $x \mapsto \int_x^1 \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t$ n'est pas prolongeable par continuité en 0.