Exercice probabilités CCP 2020, une correction

Exercice 1: Retour à l'origine d'une marche aléatoire sur Z. CCP 2020

Partie I - Calcul de p_n

- 1. La variable aléatoire $S_n = \sum_{k=1}^n X_k$ représente la position du pion à l'instant n, valable aussi pour n = 0.
- 2. On a $p_0 = P(S_0 = 0) = 1$.
 - On a $p_1 = P(S_1 = 0) = 0$ puisque $S_1(\Omega) = \{-1, 1\}$.
 - Les événements $(X_1 = 1)$ et $(X_1 = -1)$ forment un système complet d'événements. D'après la formule des probabilités totales, il vient :

$$p_2 = P(S_2 = 0) = P(S_2 = 0, X_1 = 1) + P(S_2 = 0, X_1 = -1)$$

 $= P(X_2 = -1, X_1 = 1) + P(X_2 = 1, X_1 = -1)$
 $= P(X_2 = -1)P(X_1 = 1) + P(X_2 = 1)P(X_1 = -1)$ par indépendance
 $= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

- 3. Supposons que n soit impair. Pour $k \in \{1, ..., n\}$ la variable aléatoire X_k prend une valeur qui est impaires, donc S_n aussi, de sorte que $[S_n = 0] = \emptyset$ d'où $p_n = 0$.
- 4. On a $Y_k(\Omega) = \{0,1\}$ donc Y_k suit une loi de Bernoulli de paramètre :

$$P(Y_k = 1) = P\left(\frac{X_k + 1}{2} = 1\right) = P(X_k = 1) = \frac{1}{2}.$$

- 5. Soit $n \in \mathbb{N}^*$.
 - Les variables $(Y_k)_{k \in \mathbb{N}^*}$ suivent toutes une loi de Bernoulli et sont indépendantes, donc, pour tout n > 0, $Z_n = \sum_{i=1}^n Y_i$ suit une loi binomiale de paramètres $\mathcal{B}(n, \frac{1}{2})$. i.e. $Z_n(\Omega) = [0, n]$ et, pour tout $k \in [0, n]$,

$$P(Z_n = k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^n.$$

- Puis on a : $Z_n = \sum_{i=1}^n Y_i = \sum_{i=1}^n \left(\frac{1}{2}X_i + \frac{1}{2}\right) = \frac{1}{2}\sum_{i=1}^n X_i + \frac{n}{2} = \frac{S_n + n}{2}$, donc $S_n = 2Z_n n$.
- 6. D'après la question précédente,

$$p_{2m} = P(S_{2m} = 0) = P(2Z_{2m} - 2m = 0) = P(Z_{2m} = m)$$

= $\binom{2m}{m} \left(\frac{1}{2}\right)^{2m} = \binom{2m}{m} \frac{1}{4^m}.$

Partie II - Fonction génératrice de la suite $(p_n)_{n\in\mathbb{N}}$

- 7. Pour tout $n \in \mathbb{N}$ et $x \in [-1,1]$ on a $|p_n x^n| \leq p_n$. Comme la série $\sum p_n$ converge de somme 1, la série numérique $\sum p_n x^n$ est absolument convergente, donc $R_p \geqslant 1$.
- 8. Soit $m \in \mathbb{N}^*$. On a : Pour tout $m \in \mathbb{N}^*$, on a :

$$\begin{split} \frac{(-1)^m}{m!} \prod_{k=1}^m \left(-\frac{1}{2} - k + 1 \right) &= \frac{1}{m!} \prod_{k=1}^m \left(-\left(-\frac{1}{2} - k + 1 \right) \right) \frac{1}{m!} \prod_{k=1}^m \left(\frac{2k-1}{2} \right) \frac{1}{m!2^m} \prod_{k=1}^m (2k-1) \\ &= \frac{1}{m!2^m} \frac{\prod_{k=1}^m (2k-1) \prod_{k=1}^m (2k)}{\prod_{k=1}^m (2k)} \frac{1}{m!2^m} \frac{\prod_{k=1}^m k}{2^m \prod_{k=1}^m k} \\ &= \frac{1}{m!2^m} \frac{(2m)!}{2^m m!} = \frac{(2m)!}{m!m!} \frac{1}{2^m 2^m} = \binom{2m}{m} \frac{1}{4^m} = p_{2m} \end{split}$$

9. D'après le cours, pour tout $\alpha \in \mathbb{R}$, pour tout $x \in]-1,1]$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \prod_{k=1}^{n} (\alpha-k+1) x^n.$$

Ainsi, pour tout $x \in]-1, 1[$, comme $(-x^2) \in]-1, 1[$, on a

$$(1-x^2)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \prod_{k=1}^{n} (\alpha - k + 1)(-x^2)^n = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n!} \prod_{k=1}^{n} (\alpha - k + 1)x^{2n}.$$

De plus, avec les expressions trouvées pour p_n dans la partie précédente, on a, pour tout $x \in]-1,1[$ (on a $R_p \geqslant 1$),

$$f(x) = \sum_{n=0}^{+\infty} p_n x^n = p_0 + \sum_{n=1}^{+\infty} p_{2n} x^{2n} + \sum_{n=0}^{+\infty} \underbrace{p_{2n+1}}_{=0} x^{2n+1} = 1 + \sum_{n=1}^{+\infty} p_{2n} x^{2n}.$$

Ainsi, pour $\alpha = -1/2$, comme $p_{2n} = \frac{(-1)^n}{n!} \prod_{k=1}^n (\alpha - k + 1)$ pour tout $n \ge 1$ d'après la question précédente, on a $f(x) = (1 - x^2)^{-1/2}$ pour tout $x \in]-1,1$

Partie III - Loi de la variable aléatoire T

- 10. Pour tout $n \in \mathbb{N}^*$, on a $[T=n] \subset [S_n=0]$, donc $P(T=n) \leqslant P(S_n=0)$. Or, pour tout n impair, $P(S_n=0)=0$, donc, pour tout n impair, $q_n=P(T=n)=0$. Ainsi $q_1=0$.
 - $[S_1=0]$ est un événement impossible, donc, par définition de T, on a $T\geqslant 2$ et $[T=2]\subset [S_2=0]$, donc $q_2 = P(T=2) = P(S_2=0) = p_2 = \frac{1}{2}$
- 11. Pour tout $x \in [-1, 1]$,

$$|g_n(x)| = |q_n x^n| = P(T = n)|x|^n \leqslant P(T = n),$$

donc $||g_n||_{\infty}^{[-1,1]} \leq P(T=n)$. Or la série $\sum_{i=1}^{n} P(T=n)$ converge (et vaut $1 - P(T=+\infty)$ car $T(\Omega) = \mathbb{N} \cup \{+\infty\}$), donc, par comparaison,

 $\sum_{n\geq 0} \|g_n\|_{\infty}^{[-1,1]}$ converge, donc la série de fonctions $\sum_{n\geq 0} g_n$ converge normalement sur [-1,1].

• Comme la série de fonctions $\sum_{n\geq 0} g_n$ converge normalement sur [-1,1], $\sum_{n\geq 0} g_n$ converge simplement sur

[-1,1], donc, en particulier, pour x=1, la série numérique $\sum_{n=0}^{\infty} g_n(1)$ converge, ce qui assure que

$$R_q = \sup\{\rho > 0 : \sum_{n \geqslant 0} q_n \rho^n \text{ converge}\} \geqslant 1.$$

12. Les fonctions f et g sont développables en série entière au moins sur]-1,1[, donc, par produit de Cauchy, fg est développable en série entière au moins sur]-1,1[et, pour tout $x \in]-1,1[$,

$$f(x)g(x) = \left(\sum_{n=0}^{+\infty} p_n x^n\right) \left(\sum_{n=0}^{+\infty} q_n x^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} p_k q_{n-k}\right) x^n$$

$$= \left(\sum_{k=0}^{0} p_k q_{n-k}\right) x^0 + \sum_{n=1}^{+\infty} \left(\sum_{k=0}^{n} p_k q_{n-k}\right) x^n$$

$$= p_0 q_0 + \sum_{n=1}^{+\infty} p_n x^n \quad \text{(d'après la relation admise pour tout } n \in \mathbb{N}^*\text{)}$$

$$= 0 + \sum_{n=1}^{+\infty} p_n x^n = -1 + p_0 x^0 + \sum_{n=1}^{+\infty} p_n x^n$$

$$= -1 + \sum_{n=0}^{+\infty} p_n x^n = -1 + f(x).$$

13. • Comme, pour tout $x \in]-1,1[$, $f(x)=(1-x^2)^{-1/2}$ (d'après la question 9), la relation obtenue à la question précédente devient :

$$\forall x \in]-1,1[, (1-x^2)^{-1/2}g(x) = (1-x^2)^{-1/2}-1,$$

donc, en multipliant de part et d'autre par $\sqrt{1-x^2}=(1-x^2)^{1/2}$, on a bien, pour tout $x\in]-1,1[$,

$$g(x) = 1 - \sqrt{1 - x^2}$$
.

• Pour tout $x \in]-1,1[,$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \prod_{k=1}^{n} (\alpha - k + 1) x^{n},$$

donc, pour $\alpha = 1/2$, on a , pour tout $x \in]-1,1[$, comme $(-x^2) \in]-1,1[$,

$$\sqrt{1-x^2} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \prod_{k=1}^{n} \left(\frac{1}{2} - k + 1\right) (-x^2)^n = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n!} \prod_{k=1}^{n} \left(\frac{1}{2} - k + 1\right) x^{2n},$$

donc

$$g(x) = 1 - \sqrt{1 - x^2} = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n!} \prod_{k=1}^{n} \left(\frac{1}{2} - k + 1\right) x^{2n},$$

où le rayon de convergence de cette série entière vaut 1.

14. Pour tout $x \in]-1,1[$, on a

$$g(x) = \sum_{n=0}^{+\infty} q_n x^n = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n!} \prod_{k=1}^n \left(\frac{1}{2} - k + 1\right) x^{2n},$$

donc, par unicité du développement en série entière sur] -1,1[, on a :

$$q_0 = 0$$
, $\left(\forall n \in \mathbb{N}^*, q_{2n} = \frac{(-1)^{n+1}}{n!} \prod_{k=1}^n \left(\frac{1}{2} - k + 1 \right) \right)$ et $(\forall n \in \mathbb{N}, q_{2n+1} = 0)$.

15. • Comme $T(\Omega) = \mathbb{N} \cup \{+\infty\}$, on a

$$P(T = +\infty) = 1 - \sum_{n=0}^{+\infty} P(T = n) = 1 - \sum_{n=0}^{+\infty} q_n = 1 - \sum_{n=0}^{+\infty} q_n 1^n = 1 - g(1).$$

• Or, comme pour tout $n \in \mathbb{N}$, g_n est continue sur [-1,1] et $\sum_{n\geqslant 0}g_n$ converge normalement, donc uniformé-

ment, sur [-1,1] (d'après la questin 11), la fonction $g = \sum_{n=0}^{+\infty} g_n$ est continue sur [-1,1].

En particulier, elle est continue en 1, donc

$$g(1)=\lim_{x\to 1^-}g(x)=\lim_{x\to 1^-}1-\sqrt{1-x^2}$$
 (d'après l'expression trouvée en 13)
$$=1-0=1.$$

- On a donc $P(T=+\infty)=1-g(1)=0$, donc l'événement $T=+\infty$ est quasi impossible, donc on est quasi certain que le pion reviendra à l'origine à un instant donné.
- 16. D'après le cours, T admet une espérance si et seulement si g est dérivable en 1. Or, pour tout $x \in]-1,1[$, $g(x)=1-\sqrt{1-x^2}$, donc g est dérivable sur]-1,1[et, pour tout $x \in]-1,1[$,

$$g'(x) = \frac{2x}{2\sqrt{1-x^2}} = \frac{x}{\sqrt{1-x^2}} \underset{x \to 1^-}{\to} +\infty.$$

g est continue sur [-1,1], dérivable sur]-1,1[et $\lim_{x\to 1^-} g'(x)=+\infty$, donc, d'après le théorème de la limite de la dérivée, g n'est pas dérivable en 1, et, par suite, T n'admet pas d'espérance.